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The nearly spherical nature of small fullerene cages CN (N < 70) suggests that their
π molecular orbital (MO) energy diagrams should show a shell structure. Although group
theoretical analysis of the Hückel-type energies for icosahedral and other highly symmetric
cages confirms this assumption, this has not been established for fullerene cages in general.
This work presents a simple computational algorithm based upon the canonical orthogonaliza-
tion of generator orbitals (GOs) to analyze theπ-MO energy diagrams for any fullerene cage
CN , and demonstrates the validity of a shell structure in these diagrams. Results are compared
to simple central force (spherical) models for the calculations ofπ-MO energies in fullerene
cages. The GO approach provides a ready assignment of theπ-MOs to individual spherical
harmonics and allows valuable interpretations of various physical phenomena.
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1. Introduction

The chemistry of carbon clusters exploded with the discovery and eventual char-
acterization of buckminsterfullerene (C60) in the 1980s [1–4], and continues to grow
because macroscopic quantities of C60 are available. This beautifully symmetric mole-
cule is “breathing fresh life into some old, well-established methods and principles” [5].
However, to date, very few other “fullerenes” have been isolated and structurally char-
acterized from experiments, e.g., C70 [6,7] and solid C36 [8]. Theoretical calculations
and 13C nuclear magnetic resonance spectroscopy play a huge role in elucidating the
structures of other fullerenes ranging from C20 to C102 and beyond [9–11].

The general feature of fullerene structures is three-bonded carbon atoms with pen-
tagonal and hexagonal faces to keep C–C–C bond angles around 109—120◦ (fullerenes
are trivalent, nonalternant graphs). According to Euler’s relationship between vertices,
edges and faces of convex polyhedra [12], the numbers of pentagonal and hexagonal
faces, respectively, must be 12 andN/2 − 10 for a CN fullerene. The ground state
structures of fullerenes below C102, as determined by tight-binding molecular-dynamics
total energy optimization [9–11], prefer cages that separate the pentagonal rings as far
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apart as possible (which is part of the “pentagon rule” for fullerenes) while only a few
cages prefer high symmetry, e.g., C60 and C70. In fact, C60 is the first possible “isolated
pentagon” fullerene.

Numerous calculations of the electronic structure of fullerenes exist [13–18], with
much effort devoted to elucidating the chemistry and properties of C60 and finding
simple rules for the stability of high nuclearity fullerene cages [19,20]. Useful qual-
itative information about the electronic structures of these systems has been obtained
from simple Hückel theory, which revealed the 60+ 6k leapfrog rule for closedπ -shell
fullerenes [21]. For qualitative molecular orbital (MO) methods, such as Hückel the-
ory, ordering of molecular orbital energies is frequently achieved by “node counting”
[22,23]. Along these lines, one of us has developed a pictorial method for construct-
ing the MOs for a wide assortment of discrete molecular, polymeric [24], and solid
state structures [25] – the “generator orbital” (GO) method [23]. The central idea of
this approach is that each MO of a molecule has symmetry characteristics of a specific
atomic orbital located at the molecular center, called a generator orbital (GO). There-
fore, the nodal properties of any symmetry-adapted linear combination of atomic or-
bitals (SALCs) are patterned after the nodal surfaces of the corresponding GO. The
large number of examples successfully described by this method attests to its qualitative
reliability [23].

In this article we explore the application of the GO approach via a simple computa-
tional algorithm to the interpretation ofπ -MO energy diagrams of small fullerene cages,
i.e., CN fullerenes withN � 70. We chose structures based on the results of [9] since
few of these structures have been experimentally characterized. The article is organized
as follows: (1) initial comments on the strengths and limitations of two quantitatively
simple methods to estimate a pattern of MO energies for fullerenes, based on the central
force approximation; (2) development of the computational algorithm to relate qualita-
tively useful GOs to Hückel eigenfunctions and their eigenvalues for fullerene-related
cages; and (3) examples of results for small nuclearity CN cages (20� N � 70).

2. Simple methods for MO energies of fullerenes

The patterns of valence MO energies for CN fullerene cages are complex because
4N valence atomic orbitals (VAOs) will give 4N valence MOs. But, since much of
the chemical and physical properties of fullerenes are governed by the occupied and
unoccupied states near the HOMO–LUMO gap, many methods simplify the total pat-
tern of MOs by focusing just on the “surfaceπ -MOs” (see figure 1), which are simply
N radial 2p orbitals (we can call them 2pz VAOs by placing a localz-axis at each
carbon atom). The remaining 3N valence orbitals separate into 3N/2 σ -bonding and
3N/2 σ -antibondingsp2 hybrid orbitals. The 2pz VAO is also perpendicular to thesp2

hybrid VAO set at each carbon atom, and overlaps with neighboring 2pz VAOs according
to the expressionβ = cos2ωβπ + sin2ωβσ [26], whereω is the angle subtended by the
C–C bond (edge) of the fullerene cage (see figure 2). There is aσ -overlap component to
the orbital interactions among the surfaceπ -MOs, but the relative contribution is small.
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Figure 1. Simple scheme for the distribution ofσ - andπ-MOs in fullerenes. This picture qualitatively
justifies the attention only to theπ-MOs.

Figure 2. (Left) Trueπ overlap of a pair of 2pz VAOs. (Right) The mostlyπ overlap of a pair of 2pz VAOs
on the surface of a fullerene cage.

Furthermore, theπ contribution to the total overlap increases as the size of the cage in-
creases, since the angleω decreases with increasing size of the cage. We will focus only
on theN surfaceπ -MOs derived from these 2pz VAOs.

Since fullerene cages are nearly spherical,1 the π -MO energy diagrams are ex-
pected to show a shell structure, which can be quickly obtained by using models of

1 Haddon questions whether C60 should be described as a “sphere” or as a “polyhedron” [27]. He ulti-
mately concludes that C60 (and other fullerenes as well) are best modeled as polyhedra, with his strongest
argument coming from the diamagnetic properties of C60.
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electronic structure based on the central force approximation. For these structures, two
important models would be appropriate:

(a) “Free electrons” confined to a spherical shell[28]. If the three-dimensional
symmetry of fullerene molecules is approximated as a sphere, then electrons
occupying the surfaceπ -MOs are distributed over the entire spherical shell of
radiusR and move in a constant potential (there are no distinct positions for the
nuclei in this model). Therefore, the electronic energies involve entirely kinetic
energy with the sphere radius (R) controlling the difference between energy
levels. The expression for these free electron energy levelsE

(FE)
l corresponds

to the three-dimensional rigid rotor [28]:

E
(FE)
l = A

l(l + 1)

R2
, (1)

whereA = (h̄2/2m) = 3.8101 eV·Å2 and l = 0,1,2,3, . . . . Equation (1)
is a quadratic relationship between energy and quantum number and shows a
curvature ofA/R2, which means that the curvature decreases as the size of the
cage increases. The corresponding eigenfunctionsψ

(FE)
lm (θ, φ) are the spher-

ical harmonicsYm
l (θ, φ) (i.e., s, p, d, f , etc. orbitals), so the degeneracy

associated with each energy level is 2l + 1. Therefore, each shell can have a
maximum of 2(2l + 1) electrons. According to this model, “magic electron
counts” for fullerenes would be 32, 50, 72, etc., which means that the neutral
molecules C32, C50, C72, etc. would have closed shell electronic configurations
and represent stable molecules. If this model is applied to C60 with 60π elec-
trons, all levels are filled up to thel = 5 level, which is partially filled with
10 unpaired electrons. Ball [28] has shown that this model accounts numer-
ically for three observed electronic absorptions in C60, although one of the
assigned transitions is between two excited states in this simple model. How-
ever, this model is inconsistent with the diamagnetic behavior of C60, which
requires no unpaired electrons.

(b) Electrons moving in a spherical potential ofN atoms on a spherical surface. In
this model, the cage molecule is treated as a spherical shell (radiusR) of pos-
itive chargeNZ and the electrons move throughout all space. Inside the cage,
the potential for the electrons is constant, while outside the cage the potential
follows Coulomb’s law:V (r) = −(NZe)2/(r−R). Wannier solved this prob-
lem and obtained the following approximation to the energy levels [29–31]:

E
(W)
nl ≈ −

(NZ)2

[n− (2l + 1)/4+ (2NZR)1/2/π ]2 (2)

wheren = 1,2,3, . . . , and for eachn, l = 0,1,2, . . . , n−1. The correspond-
ing eigenfunctionsψ(W)

nlm (r, θ, φ) (W = “Wannier”) are atomic-like functions
involving the product of a radial function (spherical Bessel functions) and the
spherical harmonics,jnl(r)Ym

l (θ, φ). There is a shell structure for the energy
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levels, whose energies increase as(1s) < (2p) < (2s,3d) < (3p,4f ) <

(3s,4d,5g) < (4p,5f,6h) < · · · . Therefore, for C60, the 60π electrons will
fill orbitals up to the(3p,4f ) shell and leave 20 electrons to fill the 15 orbitals
in the (3s,4d,5g) shell, which produces 10 unpaired electrons (just as in the
free electron model). This model has been discussed by Hoffmann [31] as an
approximation to finding MO energies for polyhedral molecules, e.g., boranes
and carboranes, but it has not been applied to fullerenes.

These two methods treat fullerene cages as spherical molecules, so that the pat-
terns of energy levels show a shell structure and have orbital degeneracies that exceed
three except for the two lowest energy levels. Both methods predict unpaired electrons
for buckminsterfullerene, which contradicts its diamagnetic behavior. Although group
theoretical methods can show how each shell will separate into levels appropriate for the
point group of the molecule, without some type of calculation there exists no convenient
method for identifying the sequence ofπ -MO energies. For high symmetry cages, an-
alytical methods have been developed to give the Hückel energy levels [15,19]. In the
following sections, we utilize the GO method to characterize Hückel energy levels and
demonstrate that there is a shell structure in the pattern of MO energies.

3. The generator orbital approach: Qualitative aspects

In the GO method the series of atomic orbitals placed at the geometrical center
of the molecule in question (called GOs) is used to construct qualitative representations
of the MOs for the molecule [23]. In general, these GOs have radial, conical and pla-
nar nodes. A systematic, pictorial approach to constructing and visualizing the nodes
of any atomic orbital (GO) is given elsewhere [23]. Since the distribution of electron
density in fullerene cages is confined mostly to a spherical shell, only GOs with conical
and/or planar nodes are used, i.e., the spherical harmonics 1s, 2p, 3d, 4f , 5g, etc. Since
the spherical harmonics are identified by the quantum numbersl andm, the number
of planar nodes is|m| and the number of conical nodes isl − |m|. Furthermore, the
nodal surfaces of each GO will pass through edges (bonds) and vertices (atoms), which
will depend on the orientation of the molecule with respect to the coordinate axes. As
more nodes of these GOs intersect the edges of fullerene cages, the antibonding char-
acter of the corresponding orbital increases. Since there areN 2pz VAOs in the CN
cage, we must generateN GOs that correspond to theN π -MOs for the fullerene mole-
cule. We can estimate the highest order shell2 of GOs(L) that will generate all possible
π -MOs for the CN cage: ideally,L is the smallest integer that satisfies the inequality
N �

∑L
l=0(2l + 1) = (L + 1)2 (note: the same algorithm will identify the highest

occupied shell in the free-electron model described in the previous section). In other
words,L is the smallest integer that is greater than or equal to

√
N − 1. For example,

in buckminsterfullerene,N = 60 andL = 7. However, one often has to include higher

2 We refer toshellwith respect to the quantum numberl in the spherical harmonics functionsYml (θ, φ).
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order GOs than theL shell due to the possibility of linear dependency in the set of GOs,
which is related to the problem of repetitions raised by Redmond et al. in their node-
counting treatment of icosahedral carbon cages [19]. Including GOs from higher shells,
however, will not increase the total number of GOs: the number of GOs needed must
equal the number of MOs in the molecule. One other reason for including higher order
GOs arises if the nodes of a GO pass through every atomic position (anull GO). We
have not observednull GOs for fullerene cages, but it is does occur for small borane and
carborane deltahedra [23].

Including higher order GOs, however, does create a complication in the final analy-
sis of MOs because each MO will be a linear combination of GOs to create a mutually
orthogonal set of orbitals: the set of basis functions we use isoverdetermined, i.e., the
order of the basis exceeds the order of the complete MO diagram. In the spirit of the
original GO approach and to simplify the final assignment of MOs to GOs, our compu-
tational algorithm evaluates an incomplete set of GOs, i.e., the order of the set of GOs
is less than the number of MOs needed for the complete structure. At this stage, the cal-
culated Hückel energy values for this set of GOs does not give complete agreement with
the true Hückel values. Then, we include the complete set of GOs to achieve complete
agreement. This analysis allows a measure of the extent of hybridization with higher or-
der GOs and provides a means to develop a quick “pictorial” representation of the MO.
We demonstrate this concept in some of the subsequent examples.

4. The generator orbital approach: Quantitative aspects

The original goal of the GO method was to construct qualitative MOs for a chem-
ical structure by drawing one GO after another and sketching the effects on the coef-
ficients of each VAO in the LCAO expansion. For theπ -MOs of fullerene cages, this
procedure is tedious and unnecessary: the spherical harmonics and the nearly spheri-
cal shell structure of these cages enable us to program a computer to do this for us.
Before describing this algorithm, we note that the GO approach involves creating ap-
proximate (“pictorial”) MOs to estimate MO energies for the qualitative construction of
a MO energy diagram. The typical computational pathway utilizes the LCAO approx-
imation to create a Hamiltonian matrix that is diagonalized to obtain the MO energy
levels and the corresponding wavefunctions. In our computer algorithm using the GO
method, the GOs constructed an initial set of nonorthogonal (but normalized) functions
ϕk(GO) for all k � (L + 1)2. We then performed canonical orthogonalization of the
ϕk(GO) to extract orthonormal orbitals,ψν(GO), that will transform according to the
irreducible representations of the point group of the molecule in question. Linear depen-
dencies among various GOs are recognized at this stage. The set of orthonormal orbitals
ψν(GO) is then used as the basis for a calculation of Hückel MO energies and allows di-
rect computational analysis of the contributions from each GO (i.e., spherical harmonic)
to each Hückel MO. Note that this approach does not “replace” the traditional LCAO
method for the calculation of MO energies. However, due to numerous accidental de-
generacies that arise from the Hückel Hamiltonian with constant overlap integrals (these
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degeneracies obviously occur because the group of the graph represented by the Hückel
adjacency matrix exceeds the point group of the molecule), this algorithm provides a
simple, transparent method for decomposing the MO energy diagram into projections
of spherical harmonic-type functions. In the examples discussed in the next section, we
point out advantages of this analysis.

The(L+ 1)2 GO functions for a CN cage,ϕk(GO), are constructed as LCAOs

ϕk(GO) =
N∑
j=1

Ckjχj , (3)

whereχj represents a carbon 2pz VAO at the position(xi, yi, zi) in the cage, and the
coefficientCkj is the value of the real-form spherical harmonic [32] at those coordi-
nates, i.e.,Ckj = Re(Ym

l (xj , yj , zj )), because the actual MOs are real functions. The
coefficients are scaled to normalize the functionsϕk(GO). Since these functions are vec-
tors in anN-dimensional space, they are linear dependent and there will exist, at least,
[(L + 1)2−N] linear dependency relations between them.

To perform canonical orthogonalization of these nonorthogonal GOs, we need the
overlap matrix betweenϕk(GO)’s, which is given by

Skk′ =
〈
ϕk(GO)

∣∣ϕk′(GO)
〉 =

N∑
i=1

N∑
j=1

CkiCk′j 〈χi |χj 〉 =
N∑
j=1

CkjCk′j , (4)

where we have used the Hückel overlap matrix between atomic orbitals, i.e.,
〈χi |χj 〉 = δij (i.e., S = C†XC, whereX = I). The eigenvalues of the overlap ma-
trix are{λν} and the eigenvectors are

ψ ′ν =
(L+1)2∑

k

Tkνϕk(GO). (5)

Because of the linear dependencies among{ϕk(GO)}, [(L + 1)2 − N], eigenvalues of
this overlap matrix are identically 0. We can, therefore, order the eigenvalues ofS by
decreasing magnitude, which assigns the zero eigenvalues toλN+1, . . . , λ(L+1)2. Also,
since the overlap matrix, by construction, embodies the geometry and symmetry of the
CN cage, the eigenvectors span irreducible representations of the molecular invariance
group. The eigenvectors in this form are mutually orthogonal but not normalized: the
overlap integrals between them will be

〈ψ ′µ|ψ ′ν〉 =
(L+1)2∑

k′

(L+1)2∑
k

Tk′µTkνSk′k = λνδµν. (6)
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Equation (6) has two implications: (i) forν > N , 〈ψ ′ν |ψ ′ν〉 = 0, which means that the
equations,

ψ ′ν =
(L+1)2∑

k

Tkνϕk(GO) = 0 for ν = N + 1, . . . , (L+ 1)2, (7)

are the[(L + 1)2 − N] linear dependency relationships among{ϕk(GO)}; and (ii) for
ν � N, 〈ψ ′ν |ψ ′ν〉 = λν, from which we can calculate the orthonormal orbitals constructed
from the GOs

ψν = (λν)
−1/2

(L+1)2∑
k

Tkνϕk(GO) =
(L+1)2∑

k

akνϕk(GO) =
(L+1)2∑

k

N∑
j=1

akνCkjχj , (8)

which is represented as both a linear combination of GOs (LCGO) as well as AOs
(LCAO). At this point, the Hückel Hamiltonian matrix [26] is constructed and diago-
nalized using this set of orthonormal functions. Note: for the calculation, we have used
the assignment of matrix elements between AOs:

〈χi |H |χj 〉 =



αi = α = 0, for i = j,

βij = β = −1, for i, j nearest neighbors,

0, otherwise.

(9)

It is well known that the Hückel method is a drastic approximation to achieve quantita-
tive MO energy diagrams, but the method does reproduce numerous energetic and struc-
tural relationships when symmetry arguments are important, which is often the case for
fullerenes [13–18].

The final eigenfunctions specified with respect to the GOs are

4n =
N∑
ν=1

bnνψν =
N∑
ν=1

(L+1)2∑
k

akνbnνϕk(GO) (10)

corresponding to the eigenvalueEn. Analysis of each MO involves determining the
fraction of each GO that contributes to the MO4n, fn(ϕk(GO)):

fn
(
ϕk(GO)

) =
N∑

µ=1

N∑
ν=1

bnµbnν

(L+1)2∑
k′

ak′µakνSk′k, (11)

which is a complicated summation of products because{ϕk(GO)} is not an orthogonal
set of functions. We can also analyze the significance of a particular GO to the total MO
energy diagram by evaluating the following summation over allN MOs:

fTOT
(
ϕk(GO)

) =
N∑
n=1

fn
(
ϕk(GO)

)
. (12)
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Table 1
Contributions from GOs to theπ-MO energy diagrams for selected fullerenes. The number ofπ-MOs
equals(L + 1)2 − number of dependency relations. For each example, two values ofL are listed to give

both underdetermined and overdetermined results.

C20 (Ih) C28 (Td) C36 (D6h) C50 (D5h) C60 (Ih) C70 (D5h)

L 3 4 4 5 5 6 6 7 7 8 8 9

1s (1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2p (3) 3.00 3.00 3.00 2.98 2.96 2.96 3.00 2.98 2.99 2.99 2.99 2.98
3d (5) 5.00 4.22 5.00 4.58 5.00 4.53 4.99 4.80 5.00 4.76 4.96 4.81
4f (7) 7.00 7.00 7.00 6.25 6.58 6.58 6.99 6.67 6.91 6.91 6.88 6.56
5g (9) 4.78 9.00 6.31 9.00 6.29 8.90 7.31 9.00 7.36 8.68 7.67
6h (11) 6.88 8.46 8.46 10.15 8.12 8.50 8.50 8.96 8.46
7i (13) 6.18 11.97 9.40 12.00 8.26 10.22 8.95
8j (15) 9.72 11.60 11.60 11.82 9.61
9k (17) 8.62 13.49 9.84
10l (19) 10.12
(L+ 1)2 16 25 25 36 36 49 49 64 64 81 81 100

Number of
dependency 0 5 0 8 3 13 2 14 7 21 12 30

relations

Furthermore, the total contribution of an entire shell to the MO energy diagram,fTOT(l),
is simply

∑+m
k=−m fTOT(ϕk(GO)) in shell l, which can be no larger than 2l + 1. Ta-

ble 1 summarizes these total contributions to various specific examples of small fullerene
cages, and we will discuss these results in the next section.

In the GO method, the average energy of each shelll has a closed form due to the
addition theorem for spherical harmonics (ωN is the angle between the points (θi, φi)

and (θj , φj ) with respect to the center of the sphere for the cage CN ):

〈
El(GO)

〉 = α+3β
l∑

m=−l
Y−ml (θi, φi)Y

m
l (θj , φj ) = α+3βPl(cosωN) = −3Pl(cosωN),

(13)
wherePl(cosωN) is the Legendre polynomial of degreel [33]. The last equality comes
from the Hückel assignments ofα andβ. This simple formula allows a quick eval-
uation of which shells will give bonding MOs:〈El(GO)〉 < 0. Figure 3 shows that
〈El(GO)〉 drop monotonically with increasing size of the fullerene cageN : asN in-
creases, the number of bonding MOs will increase. This curve also identifies shells that
will be nearly net nonbonding for certain fullerene cages. For example, in C36 and C50,
respectively, thel = 4 (5g) andl = 5 (6h) shells have average energies near zero. The
graph in figure 3 requires establishing the correlation betweenN and cosωN , which we
determined graphically by numerically solving the equation

Nπ = 60 arcsin

(
τ

2 cos(ωN/2)

)
+ (3N − 60)arcsin

( √
3

2 cos(ωN/2)

)
, (14)
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Figure 3. Variations in〈El(GO)〉 (see equation (13)) with the number of carbon atoms in fullerene cages
for different quantum numbersl. Energies less than zero are bonding; energies greater than zero are anti-

bonding.

whereτ is the golden mean. Equation (14) arises by dividing the spherical surface
into twelve spherical pentagons andN/2− 10 spherical hexagons involving equal edge
lengths. The numerical solution is of equation (14) is

cosωN = 0.80262
(
1− e−0.10049N

)+ 0.20694
(
1− e−0.01409N

)
. (15)

The quantitative application of the GO method does not replace application of the
Hückel approach to achieve MO energy values, because both methods require matrix
diagonalization. The traditional Hückel method utilizes an adjacency matrix for an or-
thogonal AO basis as shown in equation (9). However, the GO algorithm does allow
rapid assignment of the MOs with respect to the spherical harmonic functions (GOs)
and a convenient (“simple”) description of theπ -MOs in terms of just a few GOs (in
many cases, from a single shell), which is difficult to achieve by applying projection op-
erators to the Hückelπ -MOs. Furthermore, our results indicate that the shell structure
prevails for bondingπ -MOs but breaks down somewhat for the antibondingπ -MOs in
small fullerenes.

5. Computational details

The computer program to perform the GO analysis of the Hückelπ -MOs of
fullerenes utilized theeispackpackage [34] for matrix diagonalization and was written
in FORTRAN. Graphical figures were generated by Sigma Plot Version 7.0 and illustra-
tions of Hückelπ -MOs were created using ATOMS Version 5.0 [35].
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6. Applications to specific examples

In the remainder of this article, we will examine theπ -MO energy diagrams for six
different fullerene cages: C20, C28, C36, C50, C60 and C70. Justification for choosing these
particular cages as examples is as follows: (a) C60 and C70 are both known structures and
well characterized; (b) C28 is the fullerene cage with possible cubic symmetry, which
forms endohedralcompounds with various metal atoms; (c) C36 is predicted to be a
superconductor in the solid state according to recent calculations [36,37]; (d) C50 should
be a closed shell, stable molecule according to the free-electron model; and (e) C20 is
the smallest possible fullerene cage.

6.1. C20

“Dodecahedrene” is the first member in the series of possible fullerene-type cages
allowed by the restrictions of Euler’s theorem: 20 vertices and 12 pentagonal faces (see
figure 4). Its idealized structure has point symmetryIh.

To account for the 20 surfaceπ -MOs in C20, we require 20 GOs that will come
from the shells: 1s,2p,3d,4f , and 5g. Among these 25 GOs, we obtain five linear
dependencies from equation (7) between just the 3d and 5g shells (this is to be expected
from the irreducible representations spanned by the 3d shell in theIh point group, i.e.,
hg, and the 5g shell, i.e.,gg + hg). Table 2 summarizes the contribution from each
shell of GOs to the Hückel pattern ofπ -MOs (see also figure 4), which indicates that
theπ -MOs at−β are 84.3% 3d and 15.7% 5g, while the remaining MOs arise from
single shells of GOs. Table 2 shows the GO analysis for the overdetermined set (L =
4) and the underdetermined set (L = 3) and reveals that a shell structure is entirely
appropriate for this highly symmetric cage. Furthermore, as figure 4 points out, the
energies of the three lowestπ -MOs deviate slightly from the spherical free electron
model, but fall exactly on the curve expected from equation (13). For the 4f and 5g
shells, the average MO energies agree moderately well with equation (13) but deviate
extensively from the free electron expression – the shell structure breaks down for these
two sets of functions. From figure 3, the average energy of the 4f and 5g GOs are greater
than zero for C20. This is the first of a general observation that the free electron model
breaks down for the antibonding MOs in these fullerene cages. Figure 4 shows that all
bonding and nonbondingπ -MOs (EHückel� 0) fall on the curve from equation (13), but
the antibondingπ -MOs (EHückel > 0) deviate extensively from both approximations.
Nevertheless, a shell structure to the pattern of occupiedπ MOs in C20 is apparent and
is easily assigned from the decomposition of GOs into irreducible representations of the
point groupIh.

A neutral C20 molecule is predicted to be an open-shell, paramagnetic molecule
with two unpaired electrons in the nonbonding “4f ” HOMO for icosahedral symmetry.
Ab initio electronic structure calculations show C20 is subject to a structural Jahn–Teller
distortion [13–18], which breaks the degeneracy of the HOMO with the lowest energy
state having the two electrons paired.
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Figure 4. C20: (left) Hückelπ-MO energies plotted in units ofβ (the resonance integral between adjacent

carbon atoms); (right) assignment of MO energies to GO shells with fits to the free-electron energies (E
(FE)
l

in equation (1)) and average GO energies (〈El(GO)〉 in equation (13)). Filled circles indicate more than
50% contribution of a GO to aπ-MO; open circles indicate 33–50% contribution of a GO to aπ-MO.

Table 2
Analysis of Hückelπ-MO energy values for C20 using the GO approach.

L = 4 L = 5

EHückel (Degeneracy) EHückel (Degeneracy)

−3.000(1) 100%s −3.000(1) 100%s

−2.236(3) 100%p −2.236(3) 100%p

−1.000(5) 100%d −1.000(5) 84.3%d + 15.7%g

0.000(4) 100%f 0.000(4) 100%f

2.000(4) 100%g

2.236(3) 100%f 2.236(3) 100%f

6.2. C28

As shown in figure 5, this cage molecule is a polyhedron with 12 pentagonal and
four hexagonal faces that are arranged in a tetrahedral manner about the molecular center
to give point symmetryTd . This cage is stabilized endohedrally by tetravalent metal
atoms such as Ti, Zr, or Hf [38,39]. Formation of endohedral compounds is the probable
reason for the presence of strong [TiC28]+, [ZrC28]+, [HfC28]+, and [UC28]+ peaks in
the mass spectra of vapors obtained by laser vaporization of the corresponding graphite–
metal oxide mixtures [13].
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Figure 5. C28: (left) Hückel π-MO energies plotted in units ofβ (the resonance integral between adja-
cent carbon atoms); (right) assignment of MO energies to GO shells with fits to the free-electron energies

(E(FE)
l in equation (1)) and average GO energies (〈El(GO)〉 in equation (13)). Filled circles indicate more

than 50% contribution of a GO to aπ-MO; open circles indicate 33–50% contribution of a GO to aπ-MO.

Table 3
Analysis of Hückelπ-MO energy values for C28 using the GO approach.

L = 5 L = 6

EHückel (Degeneracy) EHückel (Degeneracy)

−3.000(1) 100%s −3.000(1) 100%s

−2.473(3) 98.9%p −2.473(3) 98.3%p

−1.618(2) 99.7%d −1.618(2) 92.3%d + 6.9%h

−1.459(3) 97.4%d −1.463(3) 89.2%d + 4.5%h

−0.618(3) 95.7%f −0.618(3) 85.6%f + 11.2%g

−0.414(1) 44.1%f + 55.9%g (1) −0.414(4) 45.2%f + 54.8%g (1)
−0.403(3) 82.2%f + 17.8%g (3) 78.5%f + 21.5%g (3)

0.618(2) 100%g 0.618(2) 96.4%g

1.618(3) 99.7%g 1.618(3) 41.3%g + 58.7%h

1.938(3) 16.6%f + 81.5%g 1.934(3) 35.3%g + 58.1%h

2.414(1) 55.9%f + 44.1%g (1) 2.414(4) 94.8%h (3)
55.9%f + 44.1%g (1)

To obtain the 28π -MOs, GOs through the 6h shell are now required. These 36
functions create eight dependency relations, which involve all shells except the 1s shell.
Figure 5 illustrates theπ -MO energy levels and immediately reveals two acciden-
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Figure 6. Hückelπ-MOs for the accidental degeneracy at the HOMO (EHückel= −0.414β) in C28.

tal, fourfold degeneracies that are not allowed by the tetrahedral point group, namely,
the weakly bondingπ -MO at E = −0.414β and the highest antibondingπ -MO at
E = +2.414β. The GO algorithm readily identifies these accidental degeneracies and
provides immediate assignment with spherical harmonics (see table 3). The bonding
MOs atE = −0.414β involve a threefold degenerate set from mostly 4f GOs and a
nondegenerate combination of 4f (Y 2

3 − Y−2
3 ) and 5g (Y 0

4 andY 4
4 + Y−4

4 ) GOs. These
π -MOs are illustrated in figure 6 to show their relationship with the GOs: the three nodal
surfaces (conical and planar) are clearly apparent for the threefold degenerate set, while
the combination of three planar nodes (thexy, xz andyz planes) and four conical nodes
gives the “nondegenerate” orbital.

As figure 5 points out, the Hückel energy values of the bondingπ -MOs agrees ex-
tremely well with equation (13), i.e., the solid line in the right-hand curve. 16 bonding
MOs arise mostly from single spherical harmonic shells (1s,2p,3d and 4f ), whereas
12 antibonding MOs involve combinations of two higher order shells (5g and 6h).
The energies of these antibonding orbitals fall in the region between the free elec-
tron model and the average energy for each GO shell. A closed-shell electronic con-
figuration occurs when four electrons are added to the neutral molecule (i.e., C4−

28 ),
which is consistent with the observation that tetravalent metal atoms will stabilize this
cage. The valence orbitals of these metals ions such as Ti or Hf, i.e.,ns, np, and
(n − 1)d VAOs, will overlap with the lowest nine occupiedπ -MOs of the C28 cage,
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Figure 7. C36 (D6h): (left) Hückelπ-MO energies plotted in units ofβ (the resonance integral between ad-
jacent carbon atoms); (right) assignment of MO energies to GO shells with fits to the free-electron energies

(E(FE)
l in equation (1)) and average GO energies (〈El(GO)〉 in equation (13)).

and the extra four electrons will occupy the 4f shell of generated MOs to give a closed
shell, diamagnetic molecule.

6.3. C36

This fullerene cage is attracting recent excitement due to theoretical calculations
suggesting that it may be a superconductor in the solid state [36,37]. The solid-state
structure of the cage is predicted to have hexagonal symmetry, point symmetryD6h:
the eight hexagons are separated into a waist of six hexagons with the two remaining
hexagons at the top and bottom that are surrounded by six pentagons each (figure 7) [8].

Although the dimension of the basis set of GOs through the 6h shell is 36, there
are three dependency relations so that we must include the 7i shell as well. We can see
this from the centrosymmetric point group: the 36π -MOs must contain 18 symmetric
and 18 antisymmetric MOs with respect to inversion. The Hückelπ -MO energies show
a shell structure clearly for the bonding MOs and there are six accidental degeneracies:
the point groupD6h only allows doubly degenerate orbitals. Among these accidental
degeneracies the sixfold and fourfold orbitals at−β and−0.414β, respectively, would
be occupied in the neutral C36 cage. GO analysis indicates that the sixfold degeneracy
arises entirely from the 4f shell (i.e.,ungeradeorbitals), whereas one of the fourfold
degenerate orbitals derives from the 4f shell while the remaining three derive from the
5g shell. Therefore, three of theseπ -MOs aregerade, one isungerade(see figure 8). Of
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Figure 8. Hückelπ-MOs for the accidental degeneracy at the HOMO (EHückel= −0.414β) in C36 (D6h).

course, the degeneracies are related to the group of the specific (approximate) Hückel
adjacency graph for the structure. These degeneracies will break when modifications
are made to the resonance integrals (βij ) to reflect the actual C–C distances in the cage.
The Hückelπ -MOs for this hexagonal cage agree very well with the results of LDA
calculations onD6h C36 and the GO analysis isexactly consistentwith the assignment
of these one-electron states to the irreducible representations ofD6h [40]. We continue
to see excellent agreement between the energies of bonding and nonbondingπ -MOs
with the average GO energies calculated from equation (13), and we also see that the
antibondingπ -MO energies fall in a band between the free electron and averaged GO
energies.

Neutral hexagonal C36 would have six electrons in the MO atEHückel = −0.414β
(a mixture of 4f and 5g shells) and be six electrons short of filling all bonding and
nonbonding orbitals (EHückel � 0). Therefore, possible closed shell or half-shell con-
figurations arise from C2−36 , C4−

36 (half-shell) and C6−36 (note: LDA calculations reveal a
diamagnetic configuration for hexagonal C36 the accidentally fourfold degenerate level
in the Hückel model is split into occupied double degenerate and nondegenerate orbitals
and one unoccupied nondegenerate orbital [40]).



G.J. Miller, J.G. Verkade / Molecular orbital energy diagrams for fullerene cages 71

Figure 9. C36 (D2d ): (left) Hückelπ-MO energies plotted in units ofβ (the resonance integral between ad-
jacent carbon atoms); (right) assignment of MO energies to GO shells with fits to the free-electron energies

(E(FE)
l in equation (1)) and average GO energies (〈El(GO)〉 in equation (13)).

Accurate quantum mechanical calculations suggest that the neutral C36 cage in the
gas phase may adopt a different structure with point groupD2d (see figure 9), because the
calculated cohesive energy and electronic properties are similar to the hexagonal struc-
ture [9–11,40]. In this cage, two sets of four hexagons, fused along opposite edges, link
together to create 12 pentagonal faces. The Hückel energies again show the expected
shell structure and lie between the two spherical models, but there is a clearer (albeit
small) separation between the 4f and 5g shells than in the hexagonal C36 cage. The GO
calculation ofπ -MOs requires including the 7i shell because the 36 functions generated
from shells through the 6h spherical harmonics create two dependencies (see table 1;
note the different number of dependency relations for this cage versus the hexagonal
isomer). Nevertheless, neutral C36 in this structure is also six electrons short of filling all
bonding and nonbonding MOs, but this neutral molecule would give rise to a diamag-
netic molecule with two of the 5g GOs filled.

6.4. C50

This hypothetical cage molecule contains 15 hexagons and 12 pentagons and shows
fivefold symmetry, point groupD5h (see figure 10). According to the free-electron
model, 50π -electrons would completely fill the 1s, 2p, 3d, 4f , and 5g shells and
give a stable, diamagnetic molecule. According to figure 10, the assignment of Hückel
π -MO energies in the bonding region (EHückel < 0) to GOs demonstrates a clear shell
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Figure 10. C50: (left) Hückelπ-MO energies plotted in units ofβ (the resonance integral between adja-
cent carbon atoms); (right) assignment of MO energies to GO shells with fits to the free-electron energies

(E(FE)
l in equation (1)) and average GO energies (〈El(GO)〉 in equation (13)).

structure through the 4f shell, but the weakly bonding MOs arise from both the 5g

and 6h shells. Twenty-sixπ -MOs are bonding or nonbonding, which means that this
50-atom cluster optimizes bonding at 52π -electrons rather than for the neutral cage,
i.e., C2−

50 should be the stable entity.

6.5. C60

Buckminsterfullerene has 12 pentagonal and 30 hexagonal faces arranged to give
icosahedral point symmetryIh. Figure 11 illustrates its structure as well as its pattern
of Hückelπ -MO energies and their assignment to the various GOs. Table 4 also lists
the sequence of energies calculated by the GO method. The agreement between the two
approaches is excellent due to the nearly spherical nature of the soccer ball structure.
In particular, the GO approach allows rapid analysis of all occupied and the lowest-
lying unoccupied MOs (see table 4). The sixtyπ -MOs require GOs up to and including
the 9k shell (l = 8; there are 7 dependency relations among the 64 GOs through the
8j shell, which does not create a complete description of the 60π -MOs). The occu-
piedπ -MOs readily show a shell structure along the series 1s, 2p, 3d, 4f , and 5g.
The HOMO and the LUMO in C60 are, respectively, fivefold and threefold degenerate
levels that are derived from the 6h GOs. There is also another threefold degenerate
level slightly above the LUMO which comes from the 7i shell of GOs rather than the
6h GO shell. There are 30 bonding MOs (25 from 1s through 5g GO shells plus 5 from
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Figure 11. C60: (left) Hückelπ-MO energies plotted in units ofβ (the resonance integral between adja-
cent carbon atoms); (right) assignment of MO energies to GO shells with fits to the free-electron energies

(E(FE)
l

in equation (1)) and average GO energies (〈El(GO)〉 in equation (13)).

Table 4
Analysis of Hückelπ-MO energy values for C60 using the GO approach.

L = 7 L = 8

EHückel (Degeneracy) EHückel (Degeneracy)

−3.000(1) 99.9%s −3.000(1) 99.9%s

−2.757(3) 99.6%p −2.757(3) 99.6%p

−2.303(5) 94.6%d −2.303(5) 94.6%d

−1.820(3) 96.6%f −1.820(3) 96.6%f

−1.562(4) 93.6%f −1.562(4) 93.6%f

−1.000(9) 90.2%g + 9.8% i −1.000(9) 78.7%g + 15.0% i

−0.618(5) 99.3%h −0.618(5) 99.3%h

0.139(3) 66.9%h+ 32.5% j 0.139(3) 66.9%h+ 32.5% j

0.382(3) 99.9%i 0.382(3) 99.9%i

1.303(5) 95.7%i 1.303(5) 64.1%i + 34.1% k

1.438(3) 48.9%h+ 50.9% j 1.438(3) 48.9%h+ 50.9% j

1.618(5) 99.3%j 1.618(5) 99.3%j

2.000(4) 20.6%g + 79.4% i 2.000(4) 12.3%i + 84.6% k

2.562(4) 94.3%j 2.562(4) 94.3%j

2.618(3) 100%k
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Figure 12. (Left) Hückelπ-MO energies for C60 near the HOMO and LUMO with GO assignments and
electronic excitations noted. (Right) Linear regression fit between8EHückelandλ−1 (nm−1) for the lowest

four assigned excitations in C60 [44].

the 6h GO shell), which are completely filled for C60. With 60 valence electrons as-
signed to these surfaceπ -MOs, the fivefold degenerate HOMO is completely occupied.
Therefore, the degeneracy of the 6h shell is broken by the symmetry of the molecule
in such a way as to give a closed shell electronic configuration. Furthermore, there are
two low-lying LUMOs, which can act as electron acceptors (1c). Therefore, buckmin-
sterfullerene readily forms anionic species, and due to the large size of the C60 cage, it
can accommodate quite large negative charges [41]. C60 also reacts with alkali metals to
give metallic products; K3C60 becomes superconducting at 19.3 K [42], while K6C60 is
semiconducting [43].

The GO approach is very effective to assign the observed electronic transitions
in C60. The UV-visible spectrum [44] reveals four transitions (nm): 404 (weak),
328 (strong), 256 (strong), 211 (medium). Figure 12 illustrates an expansion of the
pattern of Hückelπ -MO energies, labeled according to their dominant GOs, and four
excitations from occupied to unoccupied orbitals. With respect to the GO assignment,
the four excitations according to increasing energy are:(6h)→ (6h) < (6h)→ (7i) <
(5g) → (6h) < (5g) → (7i). Figure 12 also illustrates a fit between the observed
wavelengths and the calculated8EHückel values, which is nicely linear. The slope gives
an estimate of the resonance integral between two adjacentπ orbitals at about 4.1 eV
(β = (slope) · hc). Furthermore, according to selection rules [45] for electronic exci-
tations, the strongest intensities would be associated with transitions that show8l = 1,
i.e., (6h) → (7i) and (5g) → (6h), which agrees with observation. Therefore, the
GO approach successfully assigns electronic transitions and the diamagnetic property
of C60.
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Figure 13. C70: (left) Hückelπ-MO energies plotted in units ofβ (the resonance integral between adja-
cent carbon atoms); (right) assignment of MO energies to GO shells with fits to the free-electron energies

(E(FE)
l in equation (1)) and average GO energies (〈El(GO)〉 in equation (13)).

6.6. C70

We conclude our applications with a brief examination of C70, which is the second
most abundant carbon cluster extracted from the soot produced by the vaporization of
graphite. Fullerene mixtures containing anywhere between 15% and 50% of C70 have
been reported [13]. We can construct C70 by “cutting” C60 in half, which creates two
bowl-shaped C30 units. These two fragments are then pulled apart and twisted 36◦ with
respect to each other. Finally, 10 additional carbon atoms are inserted in the equatorial
plane to create a “belt” of five new hexagons. The resulting C70 cage has 12 pentagonal
and 25 hexagonal faces (see figure 13). According to this construction, C70 has cylin-
drical symmetry, point groupD5h, which gives nondegenerate and twofold degenerate
MOs, as seen in figure 13.

The GO analysis requires including GOs through the 10l shell: the 81 GOs through
the 9k shell give 12 dependency relations. Once again, the shell structure is clearly
apparent for the lowest occupied bonding levels generated by the 1s,2p,3d,4f , and 5g
GOs. These five shells of GOs account for 25 of the 35 occupied MOs. The 6h GO
shell contains the HOMO, and, according to the GO analysis, ten of the 11 6h GOs give
bonding MOs. These 10 MOs have been assigned to the first ionization band from the
photoelectron spectrum of C70 [46] (note: the second ionization band consists of the
nine MOs assigned to the 5g shell). The HOMO as calculated by this method arises
almost exclusively from theY 0

5 GO; the LUMO is also nondegenerate (although there is
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Figure 14. (Left) The HOMO for C70 as determined by the GO method along with the nodal planes for
the appropriate 6h GO; (right) the LUMO for C70 as determined by the GO method along with the nodal

planes for the appropriate 7i GO.

a closely lying double degenerate MO just above) which is from the 7i shell (Y 5
6 −Y−5

6 );
see figure 14. According to figure 13, the GO approach is well suited to account for
the large HOMO–LUMO energy gap in neutral C70 and account for its diamagnetic
behavior.

Electronic spectra in the UV and visible have also been reported for C70, and our
GO analysis can assist with the analysis. The UV-visible spectrum [47] reveals several
transitions ranging from 544 nm to 215 nm. Figure 15 illustrates an expansion of the
pattern of Hückelπ -MO energies, labeled according to their dominant GOs, and the
first three allowed excitations from occupied to unoccupied orbitals. With respect to the
GO assignment, all excitations involve(6h) → (7i) orbitals. Figure 15 also illustrates
a fit between the observed wavelengths and the calculated8EHückel values, which is
nicely linear for the lower energy transition, but shows poorer fit towards higher energy.
The slope gives an estimate of the resonance integral between two adjacentπ orbitals at
about 4.5 eV (β = (slope) · hc), which is consistent with the corresponding fit from C60

(see figure 12).

7. Summary

The nearly spherical symmetry of small fullerenes, i.e., CN for N � 70, also
provides a means to compare different models of electronic structure: a free electron
model in which electronic energy is entirely kinetic energy versus a “tight-binding”
model in which electrons are closely bound to individual atoms but allowed to “delo-
calize” throughout the molecule via atomic orbital overlaps. We have taken the seven
structural examples presented in this paper, and compared the coefficient in the free-
electron expression for the orbital energies,El = (A/R2)l(l + 1) (see equation (3)),
with the three lowest shells of MOs (i.e., the 1s,2p and 3d shells). Since the Hückel
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Figure 15. (Left) Hückelπ-MO energies for C70 near the HOMO and LUMO with GO assignments and
electronic excitations noted. (Right) Linear regression fit between8EHückelandλ−1 (nm−1) for the lowest

three assigned excitations in C70 [47].

energies are quoted in units ofβ, which is the strength of each C–Cπ -type interaction
in the cage, the fit gaveβ = 2.4 eV (an appropriate value for this type of interaction in
aromatic hydrocarbons). Note that this value is smaller than 4.1–4.5 eV estimated from
the excitation spectra of C60 and C70.

The generator atomic orbital approach allows one to make a quick determination of
the qualitative molecular orbitals for many molecules. This method is particularly advan-
tageous for the construction and analysis of Hückel energy level diagrams of fullerene-
type molecules and corresponding molecular ions through simple computations, since
the distribution of carbon atoms is largely on a single spherical shell. The GO approach
also demonstrates that simple spherical models allows a rapid nearly quantitative assess-
ment of the bonding and nonbondingπ -MOs in these cage molecules, but cannot re-
produce the entire energy diagram in the antibonding region because the set of spherical
harmonics is not a set of mutually orthogonal functions. Nevertheless, these antibonding
π -MOs do fall in a band of energy values intermediate between the free electron model
and the average GO energies.

Since the fullerene cages are nearly spherical, the simplest application of the GO
method would predict stableπ -electron counts for fullerene molecules to be 32(l = 4),
50 (l = 5),72 (l = 6),98 (l = 7), . . . ,2l2, . . . , i.e., closed shells of GOs where large
HOMO–LUMO gaps may appear. However, C60 and C70 with 60 and 70π -electrons,
respectively, are the major products of laser vaporization experiments. Therefore, or-
bital overlap significantly breaks up the degeneracies of each shell. The GO approach
reproduces the nodal characteristics of the MOs for these fullerene cages, and pro-
vides a rapid assessment of how these nodal characteristics break up the energies of
the shells to account for the stability of C60 and C70 by completely occupying all bond-
ing MOs. The GO approach also allows a rapid assessment of how these gaps occur in
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C60 and C70, and can even lead to an assignment of the UV-visible excitation spectrum
in C60.
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